Energy Management for Condominiums

Current Challenges for Condominiums

- Aging Infrastructure
 - Lots of 15-25 year old building stock
- Built for lowest first cost
 - Higher operating costs
 - Shorter useful life
 - Highest life cycle cost paid through condo fees
- Pressure to keep operating costs down & preserve reserve funds
 - Maintenance deferral
- Code compliance & hazardous materials issues

Current Challenges for Condominiums

- Energy Conditions
 - Utilities are the fastest growing budget line item
 - Electricity markets changing
 - Smart metering
 - time of day rates
 - higher overall costs
 - Natural gas prices remain volatile
 - Kyoto commitments may produce further price pressures

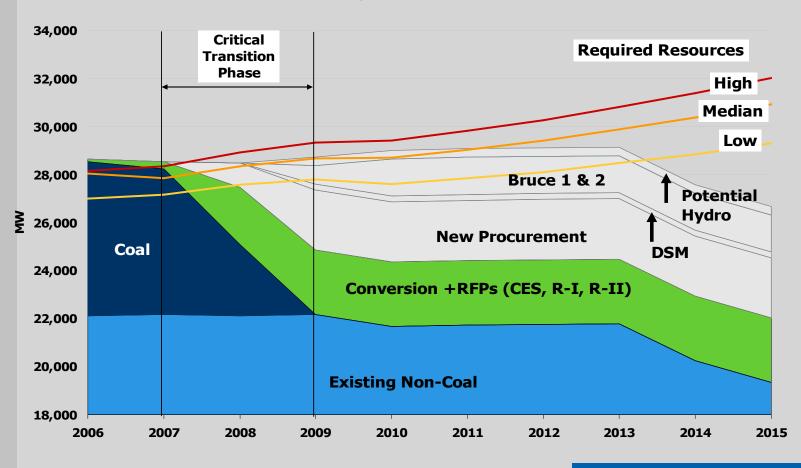
Where Are We Going?

- Electricity pricing up 33% in three years 4.3 cents to 5.7 cents
- Imports up 40%
- Consumption records broken in 10 out of 12 months
- New Peaks:

Peak Capacity: 25,805 MW – Dec 20, 2004

New Winter: 24,979 MW (Dec 20, 2004)

New Summer: 26,442 MW (July20, 2005)


- New Capacity Needed:
 - -- 25,000 MW in next 10 to 20 years

Condominium Facility Needs & Objectives

- Increase property values by lowering the total cost of ownership
- Eliminate deferred maintenance backlog
- Reduce utility and operating costs
- Ensure physical plant reliability
- Protect reserve funds

Resource Adequacy (at time of summer peak) Source: IESO Windsor Presentation October 12, 2005

Coal Replacement Scenario

Solutions.....

Siemens Building Technologies

Improvements - Lighting Retrofit

Present

- Aged fluorescent technology (T-12

 46 lumens/watt)
- Incandescent lamps (pot lights, fire exit signs 15 lumens/watt)
- Mercury vapour (exterior & garage illumination 35 lumens/watt)

Future

- Energy efficient fluorescent technology (T-8 – 69 lumens/watt or T-5 – 93 lumens/watt)
- Compact Fluorescent lamps (45 lumens/watt)
- Light Emitting Diode (LED) or Glowlux Exit Signs
- High Intensity Discharge (54 to 100 lumens/watt)

Improvement - Make Up Optimization

Present

- Purpose: Hallway Pressurization
- Fixed Volume Sized to meet maximum demand (10 cfm/room)
- Poor seasonal efficiency (65%)


Future

- Vary volume to meet demand –
 Two speed motors or variable frequency drives (VFDs)
- Connect to central plant to capture improved seasonal efficiency

Improvements - Garage Ventilation Optimization

Present

- Purpose: Extraction of vehicle exhaust
- Constant volume, constant operation
- Sized to meet peak loads Morning egress, evening returns

Future

- Match exhaust volumes to meet actual requirements through variable speed operation under carbon monoxide monitoring
- Reduce exhaust of treated air

Improvements - Swimming Pool HVAC Optimization

Present

- Atmospheric pool water heaters 65% Seasonal Efficiency
- Significant evaporative loss chlorine odour migration & damaging condensation

Future

- Medium to High efficiency heaters
 85 to 95% Seasonal Efficiency
- Automated Pool Covers
- Heat Recovery Dehumidification

Improvements - Chiller Replacement

Present

- CFC Abatement (R11 2006)
- Low energy efficiency (0.9kw/TR)
- Often oversized
- Majority near end of useful life (20 year average)

Future

- Ozone friendly refrigerants
- Improved energy efficiency (0.3kw/TR – 3 times better)
- Should be "right sized"
- Improved reliability

Improvements – Boiler Replacement

Present

- Low first installation cost
- Poor seasonal efficiency (65%)
- Insufficient turn-down ratio (Poor Control)
- Stack effect can "steal" useful heat

Future

- Lowest life cycle cost
- Good seasonal efficiency (85% non-condensing, 95% condensing)
- Excellent modulating control (100 to 30%)
 - Smaller footprint
 Building Technologies

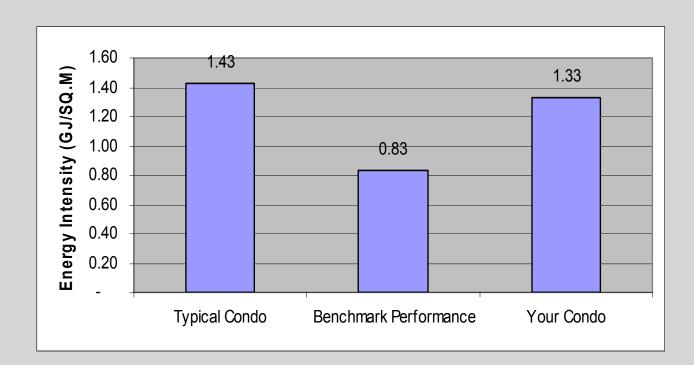
 Energy & Environmental Solution

Improvements - Building Control Upgrade

Present

- Packaged Controllers Follow Prescriptive Strategies
- Lack Central Monitoring and Control

Future


- Custom Energy Management Control Strategies
- Remote monitoring, alarming and troubleshooting
- Optimal comfort and energy use

Improvements – Other Possibilities

- Depending on your facility...
 - Electric submetering
 - In suite improvements
 - Setback thermostats
 - Low flow toilets/showerheads/aerators
 - Upgraded terminal heating equipment
 - Solar water/air heating
 - Desiccant cooling/dehumidification
 - Cogeneration
 - Window replacement
 - Envelope sealing
 - Fuel replacement Elec to Gas Dryers
 - Occupancy Sensors Ltg/Water

Knowledge is Everything

- Compare your building against comparable facilities
- Focus on energy performance rather than cost performance
- Monitor continuously and chase down discrepancies

Energy Management Economics

- Potential Energy Cost Savings 20 to 30%
- Typical Paybacks
 - 3 to 7 years for 'pure' energy savings
 - 7+ years for broader equipment renewal and facility improvement program
- Available Incentives
 - Natural Resources Canada
 - Up to \$25k for study; \$500k for implementation
 - Union Gas
 - Up to \$5k for study; \$30k for implementation
 - Electric Distributor (ie Enwin Powerlines)
 - Programs vary by region ASK!
- Project Implementation
 - Savings and cost guarantees –Low Risk
 - Financed through energy savings Preserve Reserve Fund
 - Results monitored and verified Drives Accountability

Sample Projects

Celebrity Place – MTCC 678

Measures

- Lighting Retrofit
- Building Automation
- Domestic Water Boiler Upgrade
- Pool Cover

Energy Savings

\$135,000/annum

Investment

\$687,000

Sample Projects

100 Prudential Drive – YCC 386

Measures

- Architectural, Air Sealing
- Redesign/Rebalance Corridor Ventilation System
- Install Condensing Type Heating Boiler
- Install Condensing Type Domestic Hot Water Boiler
- Reduce City Water Makeup
- Install Building Automation System

Energy Savings

\$50,400/annum

Investment

\$337,000

Sample Projects

Camelot on the Park - PCC 361

Measures

- Lighting Retrofit
- Pool Dehumidification
- Controls (MUA, Thermostats)
- Domestic Hot Water Heating, Plant Redesign and Renewal

Energy Savings

\$60,000/annum

Cost of Measures

\$324,000

Sample Projects

The Esplanade – MTCC 850

Measures

- Building Automation
- VFD on Cooling Tower
- Fan Coil Thermostats
- Modifications to MVA System to Achieve Free Cooling

Energy Savings

\$94,000/annum

Cost of Measures

\$304,000

Sample Projects

Victoria Park Place - Essex Condo #35 Measures

- Lighting Retrofit
- VFD EE Motor for DHW
- Indv Metering
- Carbon Monoxide Detectors Garage
- In-Suite Measures

Energy Savings

\$161,000/annum

Cost of Measures

\$1,036,000

Why Invest in an Energy Savings Program?

- You will save money in the near future and protect yourselves incrementally over rising energy rates
- Your units will be more attractive to buy than other inefficient condos
- You will help protect the environment

How Does an Energy Project affect Condo Fees

Prior to Project

Balance of Fees

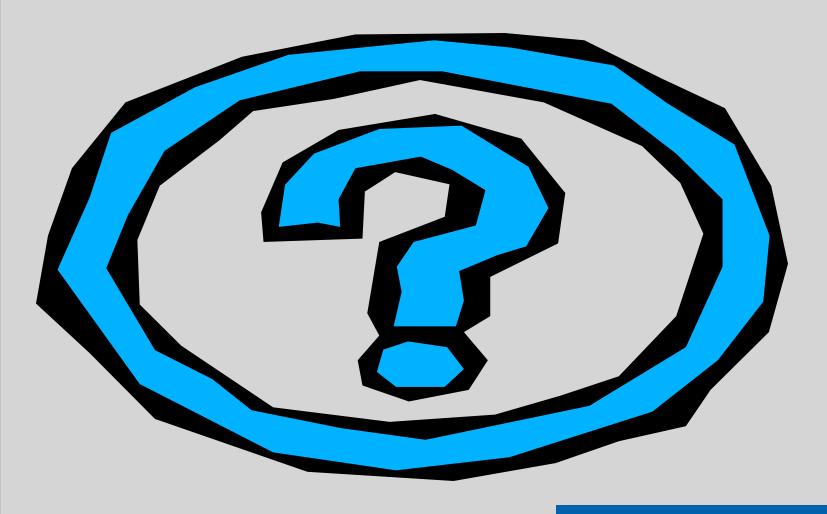
Typical energy component of Condo fees is 30 to 40% During financing

Phase

Balance of Fees

Project Financing

Reduced Energy Charges **Post Financing**


Relative overall
Condo Fee
Reduction

Reduced Energy Charges

The Retrofit Process

- Initial Assessment (No Cost-No Obligation)
 - 12 Months Utility Records (Gas, Electricity, Water)
 - Gross Floor Area
 - Energy benchmark comparison
 - 1 Day Site "walk through"
 - · Estimate of savings and implementation costs
- Preliminary Engineering Study (\$2,000 to \$5,000)
 - Budget grade pricing of individual measures
 - · Economic Feasibility of savings
 - Reserve Fund Study Matching
- Detailed Feasibility Study (\$10,000 to \$40,000)
 - At least 50% fundable through incentives
 - Commits to costs and savings/financing
- Implementation (\$100,000 to \$1,000,000)
 - Turnkey solution
 - Financed or paid from reserves
- Performance Assurance
 - Appropriate for larger projects (>\$300k)
 - Verify savings for long term value

Questions and Answers.....

